Single-Sheet Polyhedra

John SZINGER

Single-Sheet Polyhedra

Origins and Antecedents

The waterbomb, boxes, ornaments, 3-D stars
The Platonic Solids

- Origami for the Connoisseur, Kasahara \& Takahama

Pyramids, prisms and compound shapes

- John Montroll has a alot of books on this

Basic Geometries - Square Grid

Most familiar, easiest to get started with
Good for models in the cube family
An excellent choice for tessellations

Basic Geometries - Triangle Grid

Tetrahedron, Octahedron \& Icosahedron
Tetrahedron \& Octahedron together can tile 3-D space Icosahedron is different

Basic Geometries - Pentagon Grid

You can't actually make a grid of pentagons
But you get some really cool triangles and rhombi
Fivefold geometry is very hard - but very fun!

Other Geometries

Mixed polygons - Archimedean, compound, etc.

- Need to decide on base geometry for overall plan

Unusual triangles and rhombi

- Can be challenging to develop from a grid

Rectangles, parallelograms, trapezoids, etc.

- Largely unexplored

Curved folds

- Lots of cools stuff out there, but gets away from polyhedra

Other Geometries

Basic CP Plans/Layouts

Polar Geometry

- Usually uses square, hexagon or pentagon paper
- The center of the paper is the "north pole"
- The edges come together at the "south pole"

Two Hemispheres

- Requires two sheets of paper
- Useful for studies and experiments
- Can be hard to lock the two halves together

Basic CP Plans/Layouts

Cylindrical

- The paper is usually a rectangle
- The center of the paper is a point on the "equator"
- The ends of the sheet come together on a meridian
- Then paper tucks in the the north and south poles

CP Layout Considerations

Symmetry - even/odd (bilateral/rotational)

- sometimes a nice symmetry is not possible

Where is the center of the paper?

- a vertex, the middle of an edge, or the center of a face
- often need to make room for a last face opposite the center
- or, could split up the "South Pole" face

Number of divisions in the grid

- how much margin - necessary for tabs to close the model
- hard or easy number - multiple of 2,3 , or 5
- divide by the larges number first

3-D Layout Considerations

Internal layers, ridges, etc.

- Usually want to keep the paper evenly distributed inside
- The more layers, the more the model wants to spring open

Closing and locking the model

- You'll need extra paper for tabs and slots
- Usually better to make the closure symmetrical
- Sometimes it's okay to leave the bottom face open

Paper choice

- Stiff enough that creases stay sharp and faces pop
- Not to thin - many parts of the model are one layer thick
- Not thick - those layers add up fast!

Stellated Polyhedra

A vertex sum > 360 degrees necessitates hidden paper

- More pointer points means more hidden paper

Internal layers and closing the model can be challenging

Stellated Dodecahedron - Studies

Stellated Dodecahedron

Sunken Polyhedra

Sunken is the inverse of stellated in a sense

- But less room inside for hidden paper

Great Dodecahedron

Dimpled Polyhedra

Half-sunken, can suggest complicated shapes

Compound Polyhedra

Often involve different polygons
Some can be thought of as stellated forms

Starballz

Use both stellation and sunken-like folds
Many local vertex angles are 360 degrees

Color Change

First create color change regions on a flat pattern
Then fold the 3-D form from that

Color Change - Stellated Octahedron

Color Change - Dual Cube

Combining Polyhedra w/ Tessellations

A fun alternative to modulars
First embed the tessellation in the right places in the sheet
Then take that and create the 3-D form

Flowerballs

Dodecahedron with square and pentagon modules

Flowerballs

Tetrahedron, Cuboctahedron, Truncated Octahedron

Hydrangea Cuboctahedron

Future Directions

Explore other geometries
Spirals, fractals, quasi crystals, hyperbolic surfaces
Combine with curved folding
Combine with representational and natural forms
Other ideas ...

Discussion

Any questions?

